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Why Mobile Health?
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The Problems

0 The average North
American above the
age of 50 has 2-3
chronic medical
conditions

Major contributor to
mental health

diseases

O This population will
rise to 100 million by
2030

Cost of > 4 trillion
dollars per year
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Triple Aim in Healthcare

IMPROVED POPULATION HEALTH

WWWw.ims.com
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Topol EJ. Individualized medicine from prewomb to tomb. Cell 2014;241-53
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Wearable Devices as Facilitators, Not Drivers,

of Health Behavior Change

Several large technology companies including Apple,
Google, and Samsung are entering the expanding mar-
ket of population health with the introduction of wear-
able devices. This technology, wornin clothing or acces-
sories, is part of a larger movement often referred to as
the "quantified self." The notionis that by recording and
reporting information about behaviors such as physical
activity or sleep patterns, these devices can educate and
motivate individuals toward better habits and better
health. The gap between recording information and
changing behavior is substantial, however, and while
these devices are increasing in popularity, little evi-
dence suggests that they are bridging that gap.

Only 1% to 2% of individuals in the United States have
used awearable device, but annual sales are projected to
increase to more than $50 billion by 2018." Some of these
devices aim at individuals already motivated to change
their health behaviors. Others are being considered by
health care organizations, employers, insurers, and clini-
cians who see promise in using these devices to better en-
gage less motivated individuals. Some of these devices
may justify that promise, but less because of their tech-
nology and more because of the behavioral change strat-
egies that can be designed around them.

Medical News & Perspectives

Is There an App to Solve App Overload?

Bridget M. Kuehn, MSJ

ike many physicians, Suzanne
L Clough, MD, struggled to meet her
patients’ needs regarding their type
2 diabetes in a few 12-minute visits each

year. But too often, patients’ concerns
about day-to-day condition management

thebmj Research v  Educationv  News & Views v

weren't fully addressed. Many were frus- H e ad TO H e ad
trated, and some didn't follow her guid-
ance because they weren't seeing results. Head to Head
The recommendations, she said, “didn’t
have value [for them].”
Clough wondered whether real time, Can healthy people benefit from health apps?
24/7 diabetes management support
would help. That question led her on a BMJ 2015 ;350 doi: http://dx.doi.org/10.1136/bmj.h1887 (Published 14 Api
10-year journey to develop the WellDoc Cite this as: BM) 2015;350:h1887

BlueStar mobile app for patients with type
2 diabetes. It analyzes trends in patient-

entered data on bloo‘d glucoszla Ie\‘/el, car- BMJ talk medicine

bohydrate consumption, medication use, .
and other information to provide real-time Health apps for well people - problematic
coaching for the patient. Patients can then ®

securely share the data with their physi- the bml | |l 'm' m' I ' I‘ m ' " ' ‘ " ' ” " | " ' l ' . |' ' m ' 'l'l ' ' ' '
exploding medical app market, with an es-

timated 660 million downloads of health-

related apps in 2013 alone, accordingtoare- Cookie policy

cian through a web portal.
The WellDoc BlueStar app is part of an
port by the IMS Institute for Healthcare

Article Related content Metrics Responses




Digital Health
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Bhavnani S. Mobile Health Revolution in Cardiovascular Medicine. Eur J Heart (2015)
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Artificial Intelligence

Specifications 4 /
*  Facial recognition & -
* Motion sensing
 Automated pill identification
Confirmation

* Patient

* Prescribed dose
 Date/Time/Place
Communication

* Patient *==— proyider
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Many patients stop taking their medications
Adherence rates plummet in just a few months

Treatment area

3 months 6 months 12 months
1 1 ]

Diabetes (type 2)

Obesity

Hypertension

Depression

JUilE

By the end of the first
year of treatment,

50 to 90% of patients
stop taking their
prescribed therapies.

L] L] 1

60%

38%
35%

American Society of Family Practice Healthcare Statistics 2015

41%*
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The Problem

High chronic disease
burden - depression
60% can not identify
their medications
30-50% do not follow
prescription instructions
Directly responsible for
>10% of healthcare
costs

(~S15 Billion)
>2 Million serious
adverse drug reactions



Texting — Powerful Intervention for Behavioral Change

WelTel

HIV Medication Adherence Trial

Adherence Number of events (n/N [%]) OR (95% CI) p value

Sex

Women 112/177 (63%) — - 0-70 (0-46-1-07) 0.70

Men 56/96 (58%) _—— 0-49 (0-27-0-88)

Mobile phone

Shares 19/34 (56%) - 0-53(0-21-1-33) 0.86

Owns 149/239 (62%) —_—— 0-64 (0-44-0-93)

Clinic

Pumwani 82/120 (68%) B e S 0-64 (0-38-1-08)

Kajiado 16/36 (44%) - 0-56 (0-22-1-42) 0.94

Coptic 70/117 (60%) _—— 0-59 (0-34-1-02)

WHO stage

1 36/52 (69%) - 0-70 (0-32-1-53)

2 45/67 (67%) - 0-54 (0-26-1-11) 0.02

3 54/101 (53%) - = 0-62 (0-36-1-08)

4 7/9(78%) = - 0-24 (0-04-1-66)

Residence

Rural 29/51 (57%) - 0-51(0-23-1-12) 0.81

Urban 139/222 (63%) —. 0-65 (0-44-0-95)

Overall 168/273 (62%) - 0-62 (0-44-0-88) ||
0125 0-25 o's 2

<
<
Favours Favours
SMS control

20% higher adherence —NUmbér

treat of 11 to achieve viral load suppression

need to

Diabet

es

Texting to Prevent Diabetes

9

8

Overall suwvival (%)

7

60 —
/]/ HR 0-640, 95% Cl 0-446-0-917; p=0-015
O‘l

Number at risk
Control
Intervention

Cumulative incidence
of diabetes

Control

Intervention

0 |

0 -

0 -

-@— Control (n=266)
- Intervention (n=271)

o

266
271

T T
6 12 18 24

Time (months)
228 215 176 187
245 240 196 209
27 (10%) 48 (18%) 56 (21%) 73 (27%)
10 (4%) 35 (13%) 45 (17%) 50 (18%)

35% reduction in diabetes at 2-years



Smart Bottles

e Reminders
— Text messages
— Alarms

e Tamper proof
— Time release

— Compliance record once
pill is dispensed

e Shares information with
clinic and pharmacy

S —

www.clevercap.org




Nanosensors
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Edible Sensors
Wireless Observed Therapy
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DiCarlo L. A digital health solution for using and managing medications: wirelessly observed therapy. IEEE Pulse. 2012. FDA Approved 2012






Docs Willing to Share Medical
Practice with Patients? Sort of

A WebMD/Medscape Patient-Clinician Report




PHYSICIAN NOTES

Do patients have the right to see all of the Doctors should share only the notes they
notes taken by their physicians during an deem appropriate.
office wsnt‘?

YES ' Tan—xik NGREE

Patlents

89% D
64% Patients 369%
119
N

LEGEND: NS00 PHYSICIANS

Bodlt D. J Med Internet Research 2015



PATIENTS’ USE OF TECHNOLOGY

Should technology be used by patients to assist in the diagnhostic process?

YES
Patients

34%

LEGEND: R:NEISNEES) PHYSICIANS

Bodlt D. J Med Internet Research 2015



pat'ents llke me' Already a member? Sign in.

conditions, symptoms, treatments... L0

>
Live better, together!™

Making healthcare better for everyone through sharing, support, and research

Join now
(it's free!)

Compare treatments, symptoms and experiences with Share your experience, give and get support to Chart your health over time and contribute to
people like you and take control of your health improve your life and the lives of others research that can advance medicine for all

350,000 members 2,500+ conditions 60+ published research studies 28 million data points about disease

-

Learn from others m Connect with people like you Track your health
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New approach for analyzing self-reporting of insomnia symptoms reveals a high rate of
comorbid insomnia across a wide spectrum of chronic diseases

Bozena Katic, James Heywood, Fred Turek, Emil Chiauzzi, Timothy E. Vaughan, Kristina Simacek, Paul Wicks, Sachin Jain, Christopher
Winrow, John J. Renger

Sleep Medicine
Volume 16, Issue 11, Pages 1332-1341 (November 2015)
DOI: 10.1016/j.sleep.2015.07.024

ELSEVIER Copyright © 2015 The Authors Terms and Conditions
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Fibromyalgia, N=869
Crohn's Disease, N=80
Depressive Disorders, N=185
Rheumatoid Arthritis, N=167

Bipolar Disorder, N=184

63.1 | 23.6
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86.3 [11.3 |
77.8 | 144 g
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Epilepsy, N=266 78.6 [10.9

Multiple Sclerosis, N=802 81.6 [9.7

Type 2 Diabetes, N=405 B3.7 54 10.6 |

Parkinson's Disease, N=356 Bo7 6.7 IEXH

Idiopathic Pulmonary Fibrosis, N=71 83.1 % 12.7 |

Amyotrophic Lateral Sclerosis, N=185 96.2 Ij
25 50 75 100

Insomnia Diagnosis by Primary Condition, %
N=3,570

1 Not diagnosed by [ Diagnosed by a Bl Unsure,

a physician, n=2,718 physician, n=472 n=380

Sleep Medicine 2015 16, 1332-1341DOI: (10.1016/j.sleep.2015.07.024)
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Do High Healthcare Utilizers Engage with
Digital Health?

Smartphone Smartphone Smartphone
Glucometer Blood Pressure iECG

Wired for Health

Randomized clinical study that will evaluate the impact of remote wireless monitoring for patients with diabetes,
hypertension, and arrhythmias. This study will test whether wireless monitoring can reduce health care costs and
increase health self-management for patients with chronic health conditions.

The 100 patient, 6 month study will look at the patients’' health care insurance claims and compare them to the
insurance claims of the 100-person Control Group

_—— islat

QuALCOAMLIFE PUNE Scripps Transtational
-3 Q Science Instinure

Bloss CS. bioRxiv online October 28, 2015; doi: http://dx.doi.org/10.1101/029983



Digital Health?

Do High Healthcare Utilizers Engage with

Baseline Follow-up Mean Difference
Control Monitoring Control Monitoring Control Monitoring
N=285 N=75 N =65 N =65
otel Claime (8 4,265 (10,190) | 7,159 (25,251) | 5,596 (22.187) | 6,026 (21.426)f | 1,331 (21,042) | -1,133 (31,465)
0 ims (S) 961 (3,166) 990 (2,340) 807 (2.734) 845 (2,273) 0 (2,372) 0 (1,780)
I 1512 (6,868) | 2,434 (14,296) | 6,165 (37.153) | 630 (21,43) ; ; ;
Condition Claims ($) | 154/ (a75) 117 (387) 111 (379) 179 (516)
. 1519 (2.687) | 1.859 (5,315) | 1,667 (2.780) | 2.188 (6,340) §| 147 (1,057) 329 (1,860)
Pharmacy Claims (3) | 555 (1590) [ 345 (1,164) | 611 (1.603) | 340 (1.458) B 11 (531) 0 (321)
— 449 (501 4.92 (6.51) 217 (421) 477 (5.35)
Total Visits (#) 3 (6) 3 (4) 2 (7) 3 (5)
. 411 (441) 4.05 (4.09) 3.95 (3.92) 432 (4.48) -0.15 (3.30) 0.28 (3.60)
Office Visits (#) 3 (5) 3 (4) 2 (5) 3(4) 0(2 02
ER Visits (#)* 0.17 (0.60) 0.03 (0.17) 0.05 (0.37) 0.06 (0.30) 0.12(0.72) 0.03 (0.35)
Inpatient Stays (#)* | 0.22 (0.94) 0.85 (4.27) 0.17 (0.89) 0.38 (1.88) 0.05 (1.16) -0.46 (4.30)

Bloss CS. bioRxiv online October 28, 2015; doi: http://dx.doi.org/10.1101/029983




Digital Engagement
Know Your Patients Technology Needs




Improving Digital Engagement

Behavioral science factors for long-term engagement

Habit Formation Social Motivation Goal Reinforcement

Device related factors
— Design, aesthetics, out-of-the box experience
— Fit and form factor
— User experience and lifestyle compatibility

Kvedar J. Connected health: a review of technologies and strategies to improve patient care with telemedicine and
telehealth. Health Aff 2014;33:194-9



Digital Engagement
Patient Participation

3. Development
Formative assessment&
feedback by experts

2. Design )

Six main&five sub-main 4. Implementation
learning contents - Applying to the iPhone&

s android phone environment
Educational
App ~N
Development
. Process

1. Analysis
Analyzing patient need:
existing smart applicatic

5. Evaluation
Evaluation after
patients use of the app

Cho MJ. Healthc Inform Res 2014
Bhavnani S. Mobile Health Revolution in Cardiovascular Medicine (2015)



Improving Healthcare Access with
mHealth




Point-of-Care mHealth Devices

Smartphone connected Smartphone connected Smartphone connected
Blood Pressure Monitor* Oxygen Monitor Glucometer*

Handheld Pocket

Mobile Ultrasound* iECG*

iOS Devices

Bhavnani S. Deploying mHealth (NIH)



Community Based mHealth Research Model

A¥ & Social
KABALE REGIONAL REFERRAL HOSPITAL Networks
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Alternati School
Eerna ve System
nergy
Community
Healthcare A
System COmmunIty Health
Worker
L Caregiver
Carrier g
Patients

Bhavnani S. Deploying mHealth (NIH)



Community Based mHealth Participatory Model
mHealth Clinics




Mobile Health Map - United States
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Cardiovascular Disease
Hypertension

Medical Clini Diabetes
C'te Il_|ca. h;mcs Obesity
|y' cl8 _S Medications List
National City %
Cultural .
Pharmacy <: Linguistic o
Design

Mental Health

Depression PTSD

Nutrition — Activity

Autism — Vaccinations Data

Aggregation
Platform

:> Community Engagement

S8\
| \\\\/éf\’? % Clinical Trial
Community - : Outcomes

Services Smartphone connected

30K Population Asthma
Chronic lung disease

Vision and Retinal Screening
Breast and Colon Cancer



Technology Training
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Digital Health & Underserved Populations
Multidimensional Approach

4 )

Data collection for
an immigrant
patient population
City Heights
N=30,000

Screen

Uniform data
collection

Patient
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Interactive Patient Participation
Gamification
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Digital Health for Behavioral Change

.« Perceived severity
= Perceived ocutcome

= Perceived impact
of medication

- Perceived self efficacy

» Regimen complexity
» Side effects

+« Comprehension
= Sociceconomic status = Working memory * Subjective norms
« Education « Long-term memory « Social support in home
= Literacy « Prospective memory * Reminder devices
- Age - - + Medication organization

&

Conceptual Framework of Medication Adherence Derived from the Health Belief Model



